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Histogram reweighting methods now play an important role in Monte Carlo simulations, particularly
in the study of critical phenomena. Despite this widespread use, a quantitative study of the statistical
and systematic errors present when Monte Carlo data are reweighted has been lacking. In this paper, we
present a detailed analysis of the statistical errors in histogram reweighting. The formalism is tested
with simulations of the d =2 Ising model at infinite temperature and at the critical temperature. The er-
ror determined with this formalism agrees well with that calculated in the standard way of analyzing in-
dependent histograms. The implications of these results for high-resolution Monte Carlo studies are dis-

cussed.

PACS number(s): 02.70.Lq, 64.60.Cn, 05.70.Fh

I. INTRODUCTION

The resolution of Monte Carlo (MC) computer simula-
tions has steadily increased as computers have become
more powerful and simulation techniques more refined
[1]. At the same time, our understanding of the potential
sources of error in a simulation has also grown. The
computation of statistical errors in a MC run, and the
way in which these errors depend on the length of the
run, as well as the correlation between successive
configurations, has been studied in detail, and there is
now a well-developed formalism for determining errors in
thermodynamic quantities calculated directly from the
simulations [2-4].

The development of histogram (reweighting) tech-
niques [5,6] has allowed us to push the analysis of Monte
Carlo data much farther than was previously thought
possible [7]. Since the method is generally applicable to
simulations of a wide variety of systems, the question of
error determination in a histogram analysis is a problem
of far ranging significance and interest. Results obtained
by reweighting are subject to systematic errors due to the
limited range of energies observed in a simulation, as well
as an amplification of the normal statistical errors present
due to the finite number of measurements made. In pre-
vious work, histograms from several different simulations
(or equivalently different portions of a single, long simula-
tion) were analyzed independently, and the variation of
the results from the different analyses was used to esti-
mate the error. While this is a practical and relatively
efficient way to estimate errors (and in fact is the most
commonly used method of error analysis in MC even
when histogram reweighting is not used) it lacks the
well-developed formalism which exists for standard MC
simulations.

In this paper, we examine the question of the deter-
mination of the true statistical error of reweighed histo-
gram data from a single run or histogram. In the follow-
ing section we describe the theoretical formalism which
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can be used to determine the statistical error, and in Secs.
III and IV we present results for several simple cases
which can be used to test this approach. We close with
some general remarks in the final section.

II. THEORY

Before examining the effect of statistical errors in his-
togram reweighting, it is instructive to review our under-
standing of errors in MC simulations. Because of the
finite number of measurements, any quantity measured in
a simulation will suffer from statistical and systematic er-
rors [4]. This is further complicated by the fact that the
measurements are not, in general, independent. The first
careful study of statistical errors in MC simulations was
performed by Miiller-Krumbhaar and Binder [2] more
than 20 years ago. They considered the statistical error
in the average value of some quantity f measured in a
simulation. If f; is the value of f at the ith step of the
simulation, the average value of f, ( f ), computed from a
simulation consisting of N measurements (after discard-
ing a sufficient number of measurements for equilibra-
tion), is

(fr=Ls
= —~—— P 1
=N m
To calculate the statistical error in (f), Miiller-
Krumbhaar and Binder started with the expression for
the variance YV of a sum of N correlated random variables

(8]
V=N —(fI+2 3 cov(fi,f;) (2)

ij>i
and related the covariance term to a sum of time-
displaced averages. Their final expression is traditionally
written as
27' £ f + 1

2 2y 2
BfP=Kf2)—=<(f1? N , (3)
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where 7  is the integrated correlation time [9] for the
quantity f

N
TS 2

t=1

= ¢f,f(t)

and ¢ ((1) is the time-displaced antocorrelation function
(FO)f(0))—(f)?
(f2)—(f)?

Our description of statistical errors in histogram re-
weighting will follow the Miiller-Krumbhaar—Binder for-
malism rather closely. To see how this is possible, we
first point out that MC data can be reweighted without
using histograms. Consider a MC simulation performed
at B=B,=1/kT,. The average value of some quantity
f(E) calculated using the single histogram method is

¢f,f(t):

S f(E)H (E)e ~PE

(frp=-2 : @)
S H(E)e “PE
E

where AB=B—p, and E is the total energy of a
configuration. The histogram H (E) is constructed from
the time sequence of energies generated during the simu-
lation

N
S 8(E,E;) , )

i=1

H(E)=

where 8 is the Kronecker delta function and the sum runs
over the N measurements made during the simulation.
By inserting the definition of H (E) (5), into (4), and per-
forming the sum over E first, we get the equation for “re-
weighting on the fly,” or reweighting without histograms:

N _
> f(Ee A
(f)p="1 = MAB) ®)
B gemABEi D(AB)

i=1

When AB=0, this reduces to the standard expression for
the average of a quantity (1). The “reweighting on the
fly” approach is useful for analyzing data requiring a
multidimensional histogram, or for continuous systems to
avoid the need to bin the data.

To simplify the formalism, we define a “‘curly bracket”
notation for averages that include the reweighting factor
exp[ —ABE;]. Each term inside the curly brackets car-
ries along a reweighting factor. Examples of this nota-

tion are
_1 X —a8E, _ N(AB)
{f} Ngf(Ei)e N
_1 X -asE,_ DAB)
=y § ¢ N
—2ABE;

Note that these averages can also be calculated using the
corresponding histograms. The single-histogram equa-
tion itself (4) expressed in this notation is

1l
(13 -

The analysis of errors is complicated by the fact that
once reweighting has been performed, both the numera-
tor N(AB) and denominator D(AB) in (6) will suffer from
statistical error [in (1), the denominator is simply the
number of measurements, N, which has no error]. We
represent the square of these errors by SN*(AB) and
S8D*(AB), respectively. In addition, we expect that the er-
ror in the numerator is correlated with that of the
denominator because both are calculated from the same
set of measurements. It is important to note that this
correlation is present even if there is no correlation be-
tween measurements during the simulation.

If M(AB) and D(AB) were independent, the square of
the statistical error in { f ) p would be given by

(f)[;:

[ | (s s
(8f)——[m SN(AB)+ g | SDB)
or
_ 1 MAB)?
8f)=———=8NUAB)+———8D*AB) , 7
O Diape VAP Dapy AP @

which is the standard expression for the propagation of
error in a function of two independent variables [10].
However, because NM(AB) and D(AB) are not indepen-
dent, (7) is not correct, and in fact overestimates the true
error. To properly take this correlation into account, we
must include the covariance SN8D(AB). The correct ex-
pression for the square of the statistical error in (f )y is
then given by

_ | 3
(8f)"= [a/v(Am

(£
IN(AB)ID(AB)

3(f ),

2
2
aD(AB) D(AB)

2
SN(AB)+ ‘

SNBD(AB)

1
D(AB)?
_2MAB)

DAB)?

2
sA2(AB)+ MAB)Y s ap)

8f)=
&7 DAB)*

SNED(AB) .
The square of the relative error in { f) p takes on a partic-

ularly simple form:

(81)* _ SN*(AB)
(f)p NMABY
To facilitate this derivation, let us consider the covari-

ance SR&Q of two arbitrary functions R and Q which
have the same form as N(Af) and D(AB):

28 N8D(AB)
NABD(AB)

2
L, SDXAB) _

(8)
D(AB)?
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N —
R=3 r(E)e “Pi=N{r},
i=1
N —ABE,
0=73 q(E)e ‘=N{q} .

i=1

From this, we can then easily calculate SN2(AB),
8D*(AB), and SNSD(AB) by replacing the functions r
and g with f and 1 appropriately. By generalizing the
analysis of Miiller-Krumbhaar and Binder, we can define
the covariance 8R 8Q as

8R8Q =N({r,q}—{r}{q})

+2 3 cov[r(E))e

i,j>1i

ABE ABE

Lg(Epe 1. (9)

The double sum over i and j can be replaced by a single
sum of time-displaced averages

N—1 ¢
2N 1——
2 N

t=1

({r0),qg()}—{rifq}), (10)

where ¢ is the time displacement index. The covariance
(9) is thus expressed as

8R8Q =N ({r,q}—{r}{q})

Nt t | {r(0),q()}—{ri{q}
X (142 1—— =
27N e -]
1y
To complete the generalization of the Miiller-

Krumbhaar-Binder formalism, we define a reweighted
time-displaced cross-correlation function

{r(0),q(t)} —{ri{q}
{rna}—{rilq}

and a reweighted correlation time

bry, 101 ()=

N t
T 0= 1—— |61, 101D (12)
= 22 N}nm
to finally obtain
S8R8Q =N({r,g} —{r}{g})1+27( 4)) - (13)

With the proper substitutions for 7 and g in (13) we can

bix2),182) (v (ELEN =4 E) g oy
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now evaluate SN2(AB), 8D*(AB), and SNSD(AB):
SNUABY=N{f,f1—{f10+275 1)

8DXAB)=N({1,1})—{1}))1+27(1, (1)) »
BNED(AB)=N ({£,1} — {f} {11 +27 4 (1))

and the relative error in f

J{_f}_f}"}—l ’(1+27m,m)

N [M_l
{1}2

3fP” _ 1
(f¥3 N

(1+2T[1],{”)

1y

The error in a thermodynamic quantity like the energy
can be obtained simply by replacing f with E in (14). To
compute the error in a response function, for example,
the specific heat, we need to find the appropriate function
f(E) whose average value gives us the desired quantity.
For the specific heat, the function is

f(E)=(E —(E)p?

so that the specific heat C is given by

c=E (),
The quantities of interest are then
(f,fY={EY 1) —4(E)4{E3 1} +6(E)3(E%1)
—4(E)M}E1}+(E)}{1,1},
{(fL1}={E%1} —2(E)s{E, 1} +(E)3{1,1} ,
(f1={E*}—(E)j{1} .

The time-displaced correlation functions are quite com-
plex. For example, to calculate

(£, f 0} —{f}?
L=y

for the specific heat, we need {f(0), f(¢)} —{f}? which is
given by

bisy, (0=

(t)icov(|(E*E)+2(E )}$ g, £)()cov()(E,E)

T4CED 3 g2y (cOv(EZ 1) —4(E Vb gy, 1)(t)cov ) (E, 1)+ E Yy, 1) (D)cov(y(1,1)

and {f,f}—{f}? which is given by

COV{}(EZ,EZ)—4<E )BCOV“(EZ,E)+2<E )%;COV{}(E,E)+4<E )%;COV“(EZ,I)_“-(E )%COVI}(E,1)+(E )?;COV“(I,I) ,
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where

cov (X, Y)={X,Y}—{X}{Y} .

A different approach to calculating the error in C is to
make two independent passes through the data, calculat-
ing (E)g in the first pass, then directly evaluating
(E—(E) B)z in the second. We found that this second
approach is easier to implement, and is more stable nu-
merically.

The expressions for the error have two different kinds
of terms: some that depend on the simulation algorithm
used, containing the reweighted correlation times, and
others that represent equilibrium averages and are there-
fore independent of the simulation algorithm. However,
unlike the nonreweighted case, we cannot simply factor
out the correlation time dependence; this will lead to
nontrivial differences in how the error increases with A8
when we change from one simulation algorithm to anoth-
er! Examples making use of the formalism developed
here are given in the next two sections.

III. GAUSSIAN TEST CASE

In this section, we apply the formalism for the statisti-
cal error to the case of a Gaussian energy distribution
with independent measurements. While it is clear that no
real physical system is described by such a distribution,
we nevertheless feel it is instructive to carry out the cal-
culation because it allows us to derive a simple, closed-
form expression for the statistical error. In addition, we
expect that the behavior of this “toy” system will be qual-
itatively the same as that of a real system.

With independent measurements, all correlation times
are zero, and the expression for the relative error (14) is
simplified to be

B2 1 UAA LY, (A1) 15)
()} (£} {1}2 10

For this example, we will use a continuous probability
distribution which is symmetric about E =0 and has a
standard deviation o':

E2
22

P(E)=

a\/_ xp

The quantities needed for the error analysis are then
easily computed by integrating P(E) with the appropri-
ate function. For this example, we will calculate the sta-
tistical error in the energy and specific heat so that the
quantities we need are

2 2
(1)=exp [ 220 | |
2
2 2
{E}=—ABo%exp ABZU ,
2 2
{E?}=(0%+AB%*)exp ABZU ],

2 2
(E3) = —(3ABo*+ AB0Sexp ABZ"

{E*)=(30*+6AB% %+ AB*a®)exp

AB%o?
2 ’

{1,1}—exp[2AB2 1,

{E,1}=—2AB0o 2exp[2AB%0?],

{E% 1} =(0*+4AB%*)exp[2AB%07] ,
{E3’,1]=—(6AB<74+8AB3 SYexp[2AB8%?] ,

{E* 1} =(30*+24AB%0°+16AB*0®)exp[2A8%0?] .

By inserting these into (15) we find that the expression
for the square of the relative error in (E )gis

1
AB%o?

(8E)* _ exp[AB*o?]
(E)j N

Because the average value of E is zero at AB=0, the rela-
tive error is not well behaved. Let us therefore consider
the absolute statistical error, 8E:

o

VN

AB%o?
2

S8E = exp V1+AB? . (16)

For AB=0, the error reduces to the expected result
o/V' N. For small values of AB, the error increases
moderately, but as AS gets larger, the error in E begins to
increase dramatically due to the exponential term
exp[AB%0%/2] and continues to rise without limit. The
error in the specific heat has nearly the same form as the
error in the energy:

QC__ €X [ABZO'Z/Z] 2 2 4
C —P-————‘/W V2+4AB% 2+ ARt . (17)
While the explicit form will be different for real systems,
the qualitative behavior of the error should remain: For
a region around AB=0, the errors will increase only
moderately, then will begin to rise rapidly as AB in-
creases.

IV. d =2 ISING MODEL

To further test the formalism developed in Sec. II, we
need to study a more physically interesting case. The
d =2 Ising model [11,12] is especially attractive because
we can compare the calculated errors with the true devia-
tion from the exactly known answer for a finite system
[13]. In addition, we can study the effects of correlated
measurements by using both the standard Metropolis al-
gorithm [14] and the Wolff algorithm [15] in the simula-
tions. We will consider the Ising model with the Hamil-
tonian

H=—J 3 o,0;,=—JE,
Cij)

where J is the ferromagnetic coupling constant (which we
set equal to 1), o takes on the values £1, and the sum
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runs over all nearest-neighbor pairs. E is the dimension-
less total energy.

The simulations were carried out on square lattices
with linear dimension L =32 and periodic boundary con-
ditions in both lattice directions. Simulations were per-
formed at infinite temperature (8=0) and at the critical
temperature T, [12]. The results are described in the
next two sections.

A. Infinite temperature Ising model

For (8=0), we expect the results to be similar to the
Gaussian test case since all correlation times are zero,
and the distribution is approximately Gaussian. (In addi-
tion, the standard deviation o used in the Gaussian test
case was chosen to be that of a 32X 32 Ising model at
B=0.) We performed 25 simulations with 10® MCS
(complete lattice updates) per simulation. Because =0,
this corresponds to a simple-sampling rather than an
importance-sampling simulation. The measured absolute
error in the average energy ( E ) and relative error in the
specific heat C were determined by reweighting the histo-
grams independently, then considering the distribution of
the calculated values of (E) and C at each value of .
The uncertainty in the error was estimated by breaking
the data up into five bins of five simulations each. We be-
lieve that our values for the relative error as a function of
B will be well defined, but our estimate of the uncertainty
in the error could be off by a factor of 2. To calculate the
theoretical error, we evaluated (15) as a function of 8 for
each of the 25 simulations.

In Fig. 1, the measured statistical error in the energy is
plotted along with the prediction from (15). The result
for the Gaussian test case using the standard deviation of
the energy measured in the simulation for o in (16) is also
shown. The agreement is very good from =0 to around
B=0.1, a range which encompasses more than two orders
of magnitude in the error. By the time this value of S is
reached, both the theoretical and measured values for the
error suffer from systematic errors due to the reweighting
procedure and are unreliable—the true error should con-

101
10-2
L
«©O 10-3
—@— Meaosured
—W¥— Theory
—— Gaussian
10-4 E
1

0.00 0.05 0.10 0.15

B

FIG. 1. Absolute error in E as a function of 3 for the d =2
Ising model simulated at infinite temperature (8=0). The mea-
sured error is compared to the theoretical error from (15) as
well as the Gaussian test model (16).
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tinue to rise, as it does in the Gaussian test case. Figure 2
compares the theoretical and measured relative error in
the specific heat for the same data as in Fig. 1.

Since successive configurations generated from a MC
simulation at infinite temperature are independent of
each other, there might be a temptation to believe that
the reweighting of quantities to the critical region would
not suffer from increased statistical errors due to critical
slowing down. This temptation would even appear to be
supported by a naive calculation of a correlation time
which is zero for simple sampling, even in the presence of
reweighting. However, the generation of useful
configurations is, in fact, subject to an extremely strong,
effective “slowing down,” which renders such simulations
of very limited value. Indeed, it was the introduction of
importance sampling by Metropolis et al. [14] that im-
proved efficiency to make the Monte Carlo method prac-
tical.

The “slowing down” due to infinite temperature simu-
lations can be seen especially clearly in our example of
the Gaussian distribution. The probability of generating
configurations with values of the energy near
(E )= —ABo? decreases as exp[ —(AB)20%/2]. There-

_fore, when the energy of interest is far from the average

energy of the simulation in units of the width of the histo-
gram distribution, the number of useful configurations
becomes an extremely small fraction of the total number
of generated configurations. The ratio of the width of the
histogram distribution from an infinite temperature simu-
lation to the energy separation goes to zero as the square
root of the volume of the system, which is clearly
reflected in our expression for the error. This “slowing
down” is far worse than any critical slowing down due to
any standard MC methods.

This error also occurs in a somewhat more subtle ap-
parent absence of slowing down in a recent paper by Hu
[16]. Hu applied the Kastelyn-Fortuin [17] mapping be-
tween Potts models and percolation models to use simula-
tions of a percolation model to extrapolate to the proper-
ties of the Ising model. The method is, of course, valid,
but the claim of avoiding slowing down is incorrect for

100

—@— Measured

10-2 —%¥— Theory
——— Gaussian
10-3
0.00 0.05 0.10 0.15

8

FIG. 2. Relative error in C as a function of B for the d =2 Is-
ing model simulated at infinite temperature (3=0). The mea-
sured error is compared to the theoretical error from (15) as
well as the Gaussian test model (17).
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the reasons given above. The extrapolation involves a
weighting factor of s ¢, where s is the number of Potts
states and N, is the number of clusters. For Hu’s appli-
cation, s =2, and N, is proportional to the volume of the
system. Therefore, the fraction of useful configurations
decreases exponentially, and the errors increase exponen-
tially with the volume of the system. The apparent
avoidance of critical slowing down occurs at the price of
a much more severe inefficiency.

B. Ising model at T,

The Ising model at T, is a more interesting case than
the two previously discussed. Measurements made dur-
ing a simulation at 7 =T, may be strongly correlated, so
the full formalism (14) must be applied to describe the
statistical errors. More importantly, the critical region is
where the histogram method is of most practical use, so
understanding the errors near T, is of more general in-
terest.

To study the Ising model at T,, three different groups
of simulations were performed:

(i) 10 simulations of length 10 MCS using the Metrop-
olis algorithm, and keeping the time series for correlation
time analysis;

(ii) 60 simulations of length 10 MCS using the Metrop-
olis algorithm, keeping only histograms;

(iii) 5 simulations of 10° updates performed using the
Wolff algorithm, and keeping the time series for correla-
tion time analysis.

For the Metropolis algorithm study, we calculated the
measured error using the group of 60 simulations and the
theoretical error using the group of 10 simulations. The
reason for this is twofold. First, by computing the mea-
sured and theoretical errors from different simulations,
we eliminate the possibility of a false agreement between
“experiment” and theory due to some subtle correlation.
Second, the computation of the theoretical error is quite
CPU intensive. We estimate than an additional 13 days
of CPU time (on an IBM RISC/6000 model 550 worksta-
tion) would have been required to perform the complete
correlation time analysis for the extra 60 simulations.
The uncertainty in the measured error was estimated by
breaking the data up into 6 bins of 10 simulations each.
Because this is a difficult process, we expect that our esti-
mate for the error in the error could be off by 50% or
more, although the estimate for the error itself is quite re-
liable. For the Wolff algorithm study, only the theoreti-
cal errors were determined.

The computation of the theoretical error is quite chal-
lenging due to strong cancellation effects between the
three terms in (14) as well as numerical instabilities in the
determination of the reweighted correlation time (12). To
overcome these problems, it was necessary to rewrite (14)
in a more stable form. The numerically stable expression
for the first term is

TS SRS PR ) EE AN C1
{f}z t=1 N {f}z

with similar modifications to the second and third terms.
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T T

——e— Theory
—=— Measured

10-4 . L 1 1 1 s .
0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54

g

FIG. 3. Comparison of the theoretical and measured relative
error in E as a function of 3 for the d =2 Ising model simulated
at T, (marked by the vertical line). The simulations were per-
formed with the Metropolis algorithm.

Figures 3 and 4 compare the theoretical and measured
error in the energy and specific heat (respectively) for the
Metropolis algorithm simulations. The agreement be-
tween theory and experiment is very good for a range of
B values around f3;,. By the time the two error estimates
disagree, the error has increased by more than an order
of magnitude, and the results obtained are no longer reli-
able due to systematic errors from the reweighting. Fur-
ther evidence of this is given in Fig. 5, which shows the
ratio of AE, the deviation of the average energy from the
exactly known value, to the measured error 6E. The
measured energy agrees with the exact energy, within the
calculated error, for B values in the range 0.38-0.51
which roughly corresponds to the range in which the
theoretical and measured errors agree.

In Fig. 3, we can also see the curious result that the
minimum error does not occur at the 8 value where the
simulation was performed. This results from the fact that
the measurements are correlated, and that the correlation

10-1

il
fith

6C/C

——  Measured

10-2

I

0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54

FIG. 4. Comparison of the theoretical and measured relative
error in C as a function of B for the d =2 Ising model simulated
at T,. The vertical line indicates the simulated temperature.
Results obtained using the Metropolis algorithm are shown.
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FIG. 5. Ratio of the deviation from the correct answer to the
statistical error for the d =2 Ising model simulated at T,
(marked by the vertical line) using the Metropolis algorithm.
The horizontal lines represent +1 standard deviation.

time is larger for B values below B,. If we assume that
our equations for the error are correct, we can use the
Metropolis histograms to estimate what the error would
be if all the measurements were, in fact, uncorrelated.
That is, we can evaluate (15) using the Metropolis histo-
grams. (In an actual simulation, independent samples
could be obtained by discarding a number of MCS equal
to the correlation time between making measurements.)
The comparison of the measured errors with those ex-
pected for no correlations is shown in Fig. 6. To facili-
tate the comparison, the number of measurements for the
uncorrelated data was adjusted so that the errors were
the same at the simulated value of 8. The minimum error
for uncorrelated measurements is indeed almost exactly
where the simulation was performed, and the increase in
the error is fairly symmetric around B,. An important
consequence of this result is that when histogram re-
weighting is used in a MC study, every measurement

101 ¢ T T T T T T T T
F —e— Correlated 1
—=&— Uncorrelated 7
A~ 10-2
L
~
.
L
«©
10-3
10-4 -

o) L L L . . s .
0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54

FIG. 6. Comparison of the relative error in the energy for a
simulation with independent measurements to a Metropolis
simulation with correlations. The vertical line indicates the lo-
cation of the simulated temperature. Results for the d =2 Ising
model are shown.

- Metropolis
. Wolff

0-4 . L L I )
0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54

g

FIG. 7. Comparison of the relative error in E determined by
Metropolis and Wolff simulations for the d =2 Ising model. To
simplify the comparison, the error from the Wolff algorithm
was rescaled to match that of the Metropolis algorithm at the
simulated temperature (marked by the vertical line).

made should go into constructing the histogram.
Without reweighting, the statistical and systematic errors
in quantities depend only on the number of independent
measurements made. Figure 6 clearly shows that this is
not the case for reweighting.

If the shift in the minimum is due to the correlation
time, then we would expect results obtained using the
Wolff algorithm to differ from the Metropolis results. In
Fig. 7, we compare the theoretical error for the two algo-
rithms, choosing the number of Wolff measurements so
that the statistical error for the two algorithms at 3, coin-
cide. There is indeed a substantial difference in the tem-
perature dependence of the error. The most important
feature of this plot is the slower increase in the error for
the Metropolis data, compared to the Wolff data, when
they are reweighted. This phenomenon must be taken
into account in studies of critical phenomena, where it is
important to have reliable information over a range of
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FIG. 8. Plot of the reweighted energy correlation time (12)
for the Metropolis and Wolff algorithms. Results for the d =2
Ising model are shown. The simulations were performed at
T =T,, which is marked by the vertical line.
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temperatures to locate peaks in thermodynamic func-
tions.

The “reweighted” correlation time (12) for the energy
is shown as a function of B in Fig. 8 for the Wolff and
Metropolis algorithms. (The other correlation times ex-
hibit similar behavior.) The temperature dependence of
the reweighted correlation time is similar to that of the
true correlation times: The correlation time for the Wolff
algorithm remains fairly constant over the temperature
range considered while 7 for the Metropolis algorithm
varies greatly as would be expected due to its larger value
of the dynamic critical exponent z. It would be a most
fascinating result if the real and reweighted times were
the same, but this is, unfortunately, not the case.

V. DISCUSSION AND CONCLUSIONS

The problem of understanding statistical and systemat-
ic errors in histogram reweighting techniques is an im-
portant one. In this work, we have performed the first
quantitative study of the statistical errors in reweighted
data. The formalism which we have developed and tested
now puts the entire question of error determination for
reweighted data on a firm basis. The agreement between
the measured and theoretical errors is quite good; indeed,
it is better than we had anticipated. Both the measured
and theoretical errors suffer from systematic errors due to
the reweighting procedure: Rather than continuing to
rise dramatically with Af, they tend to either become
constant, or at least increase at a much slower rate than
they should. The point at which the error stops growing
rapidly can therefore provide an estimate for the limit to
the range of applicability of the reweighting method.
The theoretical calculation of the error is both difficult
and time consuming so it may not be justified for all stud-
ies. However, our goal was to show that there really is a
theoretical foundation for the description of the errors,
and our results justify the procedure of calculating errors
from multiple independent runs.

This problem is also presently under study using a
different approach by Janke [18]. Miinger and Novotny
[19] have investigated some systematic effects in re-
weighting by means of studying independent simulations,
but they developed no formalism to describe their results.
The widespread use of histogram reweighting has led to
the development of several related analysis and simula-
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tion techniques. Multicanonical reweighting methods
[20,21] have shown great promise for simulations of first-
order transitions as well as of spin glasses. Janke and
Sauer [22] have recently shown that the multicanonical
method is subject to the same kinds of errors as histo-
gram reweighting; in fact, the final result for the statisti-
cal error (14) is nearly identical for the two methods.

Of particular concern for high-resolution MC studies is
the observation that the minimum statistical error in the
temperature dependence of quantities calculated using
histograms does not necessarily occur at the temperature
where the simulation was performed. This is an effect of
the correlation time, because the minimum error for un-
correlated data is found exactly where the simulation was
performed. This effect must be taken into account when
selecting a simulation algorithm for a particular model,
and it will clearly be an important consideration in the
development of simulation algorithms to be used to study
critical phenomena with high resolution. In particular,
cluster algorithms have been promoted in recent years as
an efficient way of reducing correlation between
configurations, and thus the error. However, since the
critical temperature for an arbitrary model is not known
in advance, it is likely that the simulation will not actual-
ly be performed at the critical point. As the temperature
moves away from T, the correlation time decreases quite
rapidly for the Metropolis method; simulations per-
formed slightly away from the critical point become rela-
tively more efficient than do cluster flipping studies. This
suggests that hybrid Monte Carlo methods [23] which
combine techniques to produce many configurations quite
rapidly with only modest correlation between them might
be particularly effective. Of course, different quantities
have different correlation times and will thus have
different errors in the histogram analysis just as in a sim-
ple Monte Carlo study. The variation of the error in the
histogram analysis then allows us to estimate how com-
puter time can be used most efficiently, i.e., either to im-
prove the quality of the histogram for an initial tempera-
ture or by producing data at a shifted temperature.
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